izamorfix.ru
Введение Счёт, единица и число Устная нумерация Письменная нумерация Натуральные числа Количественный и порядковый счёт Разряды и классы Разрядные слагаемые Числовые и буквенные выражения Сравнение Арифметические действия Определение и знаки Действия первой и второй ступени Порядок действий Проценты Увеличение числа Уменьшение числа Сложение Слагаемые и сумма Сложение и вычитание с нулём Законы сложения Группировка слагаемых Округление при сложении Изменение суммы Прибавление суммы к числу и числа к сумме Сложение столбиком Нахождение неизвестного слагаемого Подобные слагаемые С переходом через десяток Таблица сложения Вычитание Уменьшаемое, вычитаемое и разность Вычитание столбиком Вычитание числа из суммы Вычитание суммы из числа Округление при вычитании С переходом через десяток Изменение разности Умножение Множимое, множитель и произведение Умножение на единицу и на ноль Законы умножения Умножение суммы на число Умножение числа на сумму Умножение числа на произведение Умножение двузначного числа на однозначное Изменение произведения Умножение столбиком Степень числа Таблица умножения Деление Делимое, делитель и частное Деление двузначного числа на однозначное Деление с остатком Свойства деления Признаки делимости Свойства делимости Изменение частного Деление столбиком Среднее арифметическое Делимость чисел Кратное и делитель Простые и составные числа Разложение числа на простые множители Нахождение всех делителей числа Наибольший общий делитель Как найти НОД Наименьшее общее кратное Меры и величины Измерение величин Единицы измерения Сложение и вычитание величин Обыкновенные дроби Обыкновенные дроби Числитель и знаменатель Правильные и неправильные дроби Основное свойство дроби Сокращение дробей Общий знаменатель Сравнение дробей Сложение Вычитание Умножение и деление Возведение в степень Взаимно обратные числа Смешанные числа Смешанные числа Перевод неправильной дроби в смешанное число Перевод смешанного числа в дробь Сравнение Сложение Вычитание Умножение и деление Возведение в степень Десятичные дроби Десятичные дроби Перевод дробей Сравнение Свойство Сложение десятичных дробей Перенос запятой Умножение и деление Округление чисел Отношения и пропорции Отношение чисел Пропорции Задачи и задания Системы счисления Определение Десятичная система Римская система Перевод из одной системы в другую Двоичная арифметика Решение задач На разностное сравнение На сложение и вычитание На умножение и деление На приведение к единице На кратное сравнение На части На уравнивание На дроби На совместную работу На цену, количество и стоимость На скорость, время и расстояние На нахождение по двум суммам неизвестного На нахождение по двум разностям неизвестного На встречное движение На противоположное движение На одно направление На движение по реке Приложение Таблица простых чисел Латинский алфавит Онлайн калькуляторы

Перевод десятичной дроби в обыкновенную

Любую десятичную дробь можно представить в виде обыкновенной дроби. Для этого надо просто записать её со знаменателем.

Главное правило в переводе десятичной дроби в обыкновенную — как читается десятичная дробь, так и пишется обыкновенная. Например:

2,3  — две целых три десятых.

Так как дробь имеет целую часть, то перевести её мы можем или в смешанное число или в неправильную дробь:

2,3 = 23 = 23 .
1010

Если у десятичной дроби нет целой части, например:

0,75  — ноль целых семьдесят пять сотых,

то её можно сразу перевести в правильную обыкновенную дробь и, если нужно (по необходимости), сократить:

0,75 = 75 = 3 .
1004

Перевод обыкновенной дроби в десятичную

Не любую обыкновенную дробь можно перевести в десятичную, так как чтобы записать обыкновенную дробь в виде десятичной, надо привести её к знаменателю, представляющему собой единицу с одним или несколькими нулями, например:  10,  100,  1000  и т. д. Если разложить такой знаменатель на простые множители, то получится одинаковое количество двоек и пятёрок:

10 = 2 · 5;

100 = 10 · 10 = 2 · 5 · 2 · 5;

1000 = 10 · 10 · 10 = 2 · 5 · 2 · 5 · 2 · 5.

Никаких других простых множителей эти разложения не содержат, следовательно:

Обыкновенную дробь можно представить в виде десятичной только в том случае, если её знаменатель не содержит никаких других множителей, кроме  2  и  5.

Возьмём дробь:

3 .
4

При разложении её знаменателя на простые множители получается произведение  2 · 2:

3 = 3 .
42 · 2

Если домножить его на две пятёрки, чтобы уравнять количество пятёрок с двойками, то получится один из нужных знаменателей —  100.  Чтобы получить дробь равную данной, то числитель тоже надо будет умножить на произведение двух пятёрок:

3 = 3 · 5 · 5 = 75 = 0,75.
42 · 2 · 5 · 5100

Рассмотрим ещё одну дробь:

5 .
14

При разложении её знаменателя на простые множители получается произведение  2 · 7,  содержащее число  7:

5 = 5 .
142 · 7

Множитель  7  будет присутствовать в знаменателе, на какие бы целые числа его ни умножали, поэтому произведение, содержащее только двойки и пятёрки никогда не получится. Значит данную дробь нельзя привести ни к одному из нужных знаменателей:  10,  100,  1000  и так далее. То есть её нельзя представить в виде десятичной.

Обыкновенную несократимую дробь нельзя представить в виде десятичной, если её знаменатель содержит хотя бы один простой множитель, отличный от  2  и  5.

Обратите внимание, что в правиле написано только о несократимых дробях, потому что некоторые дроби после сокращения, можно представить в виде десятичных. Рассмотрим две дроби:

5   и   7 .
1414

Первая дробь является несократимой и, как мы уже выяснили, её нельзя представить в виде десятичной. Во второй дроби числитель и знаменатель можно сократить на  7,  то есть на тот простой множитель, который мешает в первой дроби:

7 = 7 : 7 = 1 .
1414 : 72

Теперь осталось только умножить оба члена дроби на  5,  чтобы получить  10  в знаменателе, и можно будет переводить дробь в десятичную:

1 = 1 · 5 = 5 = 0,5.
22 · 510