izamorfix.ru
Введение Счёт, единица и число Устная нумерация Письменная нумерация Натуральные числа Количественный и порядковый счёт Разряды и классы Разрядные слагаемые Числовые и буквенные выражения Сравнение Арифметические действия Определение и знаки Действия первой и второй ступени Порядок действий Проценты Увеличение числа Уменьшение числа Сложение Слагаемые и сумма Сложение и вычитание с нулём Законы сложения Группировка слагаемых Округление при сложении Изменение суммы Прибавление суммы к числу и числа к сумме Сложение столбиком Нахождение неизвестного слагаемого Подобные слагаемые С переходом через десяток Таблица сложения Вычитание Уменьшаемое, вычитаемое и разность Вычитание столбиком Вычитание числа из суммы Вычитание суммы из числа Округление при вычитании С переходом через десяток Изменение разности Умножение Множимое, множитель и произведение Умножение на единицу и на ноль Законы умножения Умножение суммы на число Умножение числа на сумму Умножение числа на произведение Умножение двузначного числа на однозначное Изменение произведения Умножение столбиком Степень числа Таблица умножения Деление Делимое, делитель и частное Деление двузначного числа на однозначное Деление с остатком Свойства деления Признаки делимости Свойства делимости Изменение частного Деление столбиком Среднее арифметическое Делимость чисел Кратное и делитель Простые и составные числа Разложение числа на простые множители Нахождение всех делителей числа Наибольший общий делитель Как найти НОД Наименьшее общее кратное Меры и величины Измерение величин Единицы измерения Сложение и вычитание величин Обыкновенные дроби Обыкновенные дроби Числитель и знаменатель Правильные и неправильные дроби Основное свойство дроби Сокращение дробей Общий знаменатель Сравнение дробей Сложение Вычитание Умножение и деление Возведение в степень Взаимно обратные числа Смешанные числа Смешанные числа Перевод неправильной дроби в смешанное число Перевод смешанного числа в дробь Сравнение Сложение Вычитание Умножение и деление Возведение в степень Десятичные дроби Десятичные дроби Перевод дробей Сравнение Свойство Сложение десятичных дробей Перенос запятой Умножение и деление Округление чисел Отношения и пропорции Отношение чисел Пропорции Задачи и задания Системы счисления Определение Десятичная система Римская система Перевод из одной системы в другую Двоичная арифметика Решение задач На разностное сравнение На сложение и вычитание На умножение и деление На приведение к единице На кратное сравнение На части На уравнивание На дроби На совместную работу На цену, количество и стоимость На скорость, время и расстояние На нахождение по двум суммам неизвестного На нахождение по двум разностям неизвестного На встречное движение На противоположное движение На одно направление На движение по реке Приложение Таблица простых чисел Латинский алфавит Онлайн калькуляторы

Числовые и буквенные выражения

Числовые выражения

Числовое выражение — это запись, составленная со смыслом, в которой числа обозначены цифрами (в неё также могут входить знаки арифметических действий и скобки). Числовые выражения так же называются арифметическими выражениями.

7  — числовое выражение,

2 + 2 - 1  — числовое выражение,

7 - 2 · + : 1  — бессмысленный набор символов.

Вычислить значение выражения — это значит выполнить все арифметические действия, указанные в выражении. Действия выполняются в определённом порядке, в зависимости от самих действий и присутствия в выражении скобок. Про порядок выполнения действий можно прочитать в теме Порядок действий.

Значение числового выражения — это число, получившееся после выполнения всех вычислений. Например, в выражении

6 + 2 = 8,

число  8  — это значение числового выражения  6 + 2.

Пример 1. Найдите значение числового выражения  4 + 3.

Решение:

4 + 3 = 7.

Ответ:  7.

Пример 2. Вычислите значение числового выражения  4 · 3.

Решение:

4 · 3 = 12.

Ответ:  12.

Пример 3. Запишите числовые выражения и найдите их значения.

1) Из числа  60  вычесть сумму чисел  23  и  7.

2) К частному чисел  30  и  6  прибавить  18.

3) Число  93  уменьшить на произведение  5  и  6.

4) Из разности чисел  57  и  7  вычесть число  8.

Решение:

1) 60 - (23 + 7) = 60 - 30 = 30.

2) 30 : 6 + 18 = 5 + 18 = 23.

3) 93 - 5 · 6 = 93 - 30 = 63.

4) (57 - 7) - 8 = 50 - 8 = 42.

С помощью числовых выражений можно записывать решение задач.

Задача. Из куска шёлка длиной  18  метров сшили  4  платья, расходуя на каждое по  3  метра. Сколько метров шёлка осталось в куске?

Решение: Задача решается в два действия: сначала узнаём сколько шёлка было израсходовано на платья, а затем сколько шёлка осталось. Решение по действиям можно записать так:

1)  3 · 4 = 12 (м)  — израсходовали на платья.

2)  18 - 12 = 6 (м)  — осталось в куске.

Объединив эти два действия, получим числовое выражение

18 - 3 · 4 = 6 (м).

Значение этого выражения является ответом на вопрос данной задачи.

Буквенные выражения

Буквенное выражение — это числовое выражение, в котором числа могут быть обозначены и цифрами, и буквами. Буквенные выражения так же называются алгебраическими выражениями.

При обозначении чисел буквами обычно используют строчные (маленькие) буквы латинского алфавита:

7 · a  — буквенное выражение,

a – (b + c)  — буквенное выражение.

Чаще всего в буквенных выражениях разные числа обозначены разными буквами, но, например, в выражении:

a = b

подразумевается, что  и  являются одним и тем же числом.

Значение буквенного выражения — это число, получившееся после выполнения всех вычислений. Действия в буквенных выражениях выполняются после подстановки вместо букв их численных значений.

Пример. Найдите значение буквенного выражения  2 · a + 3  при  a = 7.

Решение:

2 · 7 + 3 = 14 + 3 = 17.

Ответ:  17.

В буквенных выражениях знак умножения между числом и буквой, а так же между буквами, не пишут, поэтому считается, что:

7 · a = 7a    и    x · y = xy.

Если в записи выражения одна и та же буква, например a, употребляется несколько раз, то под значением этой буквы во всех случаях мы должны иметь ввиду одно и тоже число.

Пример. Найдите значение буквенного выражения  5x - 2x  при  x = 4.

Решение:

5 · 4 - 2 · 4 = 20 - 8 = 12.

Ответ:  12.

В арифметике буквенные обозначения употребляют, когда необходимо выразить, что некоторое свойство (или правило) принадлежит не каким-нибудь отдельным числам, а является общим для любых чисел. Например:

a + b = b + a.

Данное равенство показывает нам, что, как бы мы не переставляли слагаемые, сумма от этого не изменится. Подставив вместо букв любые числа, мы можем убедиться в этом сами:

1 + 2 = 2 + 1.