izamorfix.ru
Основные понятия Счёт, единица и число Натуральные числа Натуральные числа и нуль Арифметические действия Сложение Свойства сложения Сложение столбиком Таблица сложения Изменение суммы Вычитание Изменение разности Умножение Таблица умножения Изменение произведения Изменение частного Кратное и делитель Сравнение Простые и составные числа Разложение числа на простые множители Наименьшее общее кратное Порядок действий Дробные числа Обыкновенные дроби Числитель и знаменатель Правильные и неправильные дроби Основное свойство дроби Сравнение обыкновенных дробей Смешанные числа Сложение десятичных дробей

Наименьшее общее кратное

Общее кратное

Число может быть кратно не одному, а сразу нескольким числам, такое число называется общим кратным данных чисел.

Пример. Числу 3 кратны числа: 6, 9, 12, 15 и т. д. Числу 4 кратны числа: 8, 12, 16, 20 и т. д. Можно заметить, что одно и тоже число (12) делится нацело сразу на оба числа 3 и 4. Следовательно, число 12 есть общее кратное чисел 3 и 4.

Общее кратное чисел – это любое число, которое делится без остатка на каждое из данных чисел.

Найти общее кратное нескольких натуральных чисел достаточно легко, можно просто перемножить данные числа, полученное произведение и будет их общим кратным.

Пример. Найти общее кратное для чисел 2, 3, 4, 6.

Решение:

2 · 3 · 4 · 6 = 144

Число 144 – общее кратное чисел 2, 3, 4 и 6.

Для любого количества натуральных чисел существует бесконечно много кратных.

Пример. Для чисел 12 и 20 кратными будут числа: 60, 120, 180, 240 и т. д. Все они являются общими кратными для чисел 12 и 20.

Наименьшее общее кратное

Наименьшее общее кратное (НОК) нескольких чисел – это самое маленькое натуральное число, которое делится без остатка на каждое из этих чисел.

Пример. Наименьшим общим кратным чисел 3, 4 и 9 является число 36, никакое другое число меньше 36 не делится одновременно на 3, 4 и 9 без остатка.

Наименьшее общее кратное записывается так: НОК (ab, ...). Числа в круглых скобках могут быть указаны в любом порядке.

Пример. Запишем наименьшее общее кратное чисел 3, 4 и 9:

НОК (3, 4, 9) = 36

Как найти НОК

Рассмотрим два способа нахождения наименьшего общего кратного: с помощью разложения чисел на простые множители и нахождение НОК через НОД.

С помощью разложения на простые множители

Чтобы найти НОК нескольких натуральных чисел, надо разложить эти числа на простые множители, затем взять из этих разложений каждый простой множитель с наибольшим показателем степени и перемножить эти множители между собой.

Пример. Найдите наименьшее общее кратное двух чисел 99 и 54.

Решение:

Разложим каждое из этих чисел на простые множители:

99 = 3 · 3 · 11 = 32 · 11

54 = 2 · 3 · 3 · 3 = 2 · 33

Наименьшее общее кратное должно делиться на 99, значит, в его состав должны входить все множители числа 99. Далее НОК должно делиться и на 54, т. е. в его состав должны входить множители и этого числа.

Выпишем из этих разложений каждый простой множитель с наибольшим показателем степени и перемножим эти множители между собой. Получим следующее произведение:

2 · 33 · 11 = 594

Это и есть наименьшее общее кратное данных чисел. Никакое другое число меньше 594 не делится нацело на 99 и 54.

Ответ: НОК (99, 54) = 594.

Так как взаимно простые числа не имеют одинаковых простых множителей, то их наименьшее общее кратное равно произведению этих чисел.

Пример. Найдите наименьшее общее кратное двух чисел 12 и 49.

Решение:

Разложим каждое из этих чисел на простые множители:

12 = 2 · 2 · 3 = 22 · 3
49 = 7 · 7 = 72

Применяя к этому случаю правило, мы придём к заключению, что взаимно простые числа надо просто перемножить:

22 · 3 · 72 = 12 · 49 = 980

Ответ: НОК (12, 49) = 980.

Таким же образом надо поступать, когда нужно найти наименьшее общее кратное простых чисел.

Пример. Найдите наименьшее общее кратное чисел 5, 7 и 13.

Решение:

Так как данные числа являются простыми, то просто перемножим их:

5 · 7 · 13 = 455

Ответ: НОК (5, 7, 13) = 455.

Если большее из данных чисел делится на все остальные числа, то это число и будет наименьшим общим кратным данных чисел.

Пример. Найдите наименьшее общее кратное чисел 24, 12 и 4.

Решение:

Разложим каждое из этих чисел на простые множители:

24 = 2 · 2 · 2 · 3 = 23 · 3
12 = 2 · 2 · 3 = 22 · 3
4 = 2 · 2 = 22

Можно заметить, что разложение большего числа содержит все множители остальных чисел, значит большее из этих чисел делится на все остальные числа (в том числе и само на себя) и является наименьшим общим кратным:

23 · 3 = 24

Ответ: НОК (24, 12, 4) = 24.

Нахождение НОК через НОД

НОК двух натуральных чисел равно произведению этих чисел, поделённого на их НОД.

Правило в общем виде:

НОК (m, n) = m · n : НОД (m, n)

Пример. Найдите наименьшее общее кратное двух чисел 99 и 54.

Решение:

Сначала находим их наибольший общий делитель:

НОД (99, 54) = 9.

Теперь мы можем вычислить НОК этих чисел по формуле:

НОК (99, 54) = 99 · 54 : НОД (99, 54) = 5346 : 9 = 594

Ответ: НОК (99, 54) = 594.

Чтобы найти НОК трёх или более чисел используется следующий порядок действий:

  1. Находят НОК любых двух из данных чисел.
  2. Затем находят наименьшее общее кратное найденного НОК и третьего числа и т. д.
  3. Таким образом поиск НОК продолжается до тех пор, пока есть числа.

Пример. Найдите наименьшее общее кратное чисел 8, 12 и 9.

Решение:

Сначала находим наибольший общий делитель любых двух из этих чисел, например, 12 и 8:

НОД (12, 8) = 4.

Вычисляем их НОК по формуле:

НОК (12, 8) = 12 · 8 : НОД (12, 8) = 96 : 4 = 24

Теперь найдём НОК числа 24 и оставшегося числа 9. Их НОД:

НОД (24, 9) = 3.

Вычисляем НОК по формуле:

НОК (24, 9) = 24 · 9 : НОД (24, 9) = 216 : 3 = 72

Ответ: НОК (8, 12, 9) = 72.