izamorfix.ru
Введение Счёт, единица и число Устная нумерация Письменная нумерация Натуральные числа Количественный и порядковый счёт Разряды и классы Разрядные слагаемые Числовые и буквенные выражения Сравнение Арифметические действия Определение и знаки Действия первой и второй ступени Порядок действий Проценты Увеличение числа Уменьшение числа Сложение Слагаемые и сумма Сложение и вычитание с нулём Законы сложения Группировка слагаемых Округление при сложении Изменение суммы Прибавление суммы к числу и числа к сумме Сложение столбиком Нахождение неизвестного слагаемого Подобные слагаемые С переходом через десяток Таблица сложения Вычитание Уменьшаемое, вычитаемое и разность Вычитание столбиком Вычитание числа из суммы Вычитание суммы из числа Округление при вычитании С переходом через десяток Изменение разности Умножение Множимое, множитель и произведение Умножение на единицу и на ноль Законы умножения Умножение суммы на число Умножение числа на сумму Умножение числа на произведение Умножение двузначного числа на однозначное Изменение произведения Умножение столбиком Степень числа Таблица умножения Деление Делимое, делитель и частное Деление двузначного числа на однозначное Деление с остатком Свойства деления Признаки делимости Свойства делимости Изменение частного Деление столбиком Среднее арифметическое Делимость чисел Кратное и делитель Простые и составные числа Разложение числа на простые множители Нахождение всех делителей числа Наибольший общий делитель Как найти НОД Наименьшее общее кратное Меры и величины Измерение величин Единицы измерения Сложение и вычитание величин Обыкновенные дроби Обыкновенные дроби Числитель и знаменатель Правильные и неправильные дроби Основное свойство дроби Сокращение дробей Общий знаменатель Сравнение дробей Сложение Вычитание Умножение и деление Возведение в степень Взаимно обратные числа Смешанные числа Смешанные числа Перевод неправильной дроби в смешанное число Перевод смешанного числа в дробь Сравнение Сложение Вычитание Умножение и деление Возведение в степень Десятичные дроби Десятичные дроби Перевод дробей Сравнение Свойство Сложение десятичных дробей Перенос запятой Умножение и деление Округление чисел Отношения и пропорции Отношение чисел Пропорции Задачи и задания Системы счисления Определение Десятичная система Римская система Перевод из одной системы в другую Двоичная арифметика Решение задач На разностное сравнение На сложение и вычитание На умножение и деление На приведение к единице На кратное сравнение На части На уравнивание На дроби На совместную работу На цену, количество и стоимость На скорость, время и расстояние На нахождение по двум суммам неизвестного На нахождение по двум разностям неизвестного На встречное движение На противоположное движение На одно направление На движение по реке Приложение Таблица простых чисел Латинский алфавит Онлайн калькуляторы

Десятичные дроби

Обыкновенную дробь (или смешанное число), у которой знаменатель является единицей с одним или более нулями (т. е.  10,  100,  1000  и т. д.):

можно записать в более простой форме: без знаменателя, разделяя целую и дробную части друг от друга запятой (при этом считают, что целая часть правильной дроби равна  0).  Сначала записывается целая часть, затем ставится запятая, и после неё записывается дробная часть:

десятичная запись обыкновенных дробей

Записанные в такой форме обыкновенные дроби (или смешанные числа) называются десятичными дробями.

Чтение и запись десятичных дробей

Десятичные дроби записывают по тем же правилам, по которым записывают натуральные числа в десятичной системе счисления. Это означает, что в десятичных дробях, как и в натуральных числах, каждая цифра выражает единицы, которые в десять раз больше соседних единиц, стоящих справа.

Рассмотрим следующую запись:

8,342... .

Цифра  8  означает простые единицы. Цифра  3  означает единицы, в  10  раз меньшие, чем простые единицы, т. е. десятые доли.  4  означает сотые доли,  2  — тысячные и т. д.

Цифры, которые стоят справа после запятой, называются десятичными знаками.

Читаются десятичные дроби следующим образом: сначала называется целая часть, затем — дробная. При чтении целой части, она всегда должна отвечать на вопрос: сколько целых единиц содержится в целой части?. К ответу добавляют слово целых (или целая), в зависимости от количества целых единиц. Например, одна целая, две целых, три целых и т. д. При чтении дробной части называется количество долей и в конце добавляют название тех долей, которыми дробная часть оканчивается:

3,1  читается так: три целых одна десятая;

2,017  читается так: две целых семнадцать тысячных.

Чтобы лучше понять правила записи и чтения десятичных дробей, рассмотрим таблицу разрядов и приведённые в ней примеры записи чисел:

разряды десятичных дробей

Обратите внимание, после запятой в записи десятичной дроби получается столько цифр, сколько нулей содержит знаменатель соответствующей ей обыкновенной дроби:

запись обыкновенной дроби в виде десятичной