izamorfix.ru
Введение Отличия алгебры от арифметики Множества Стандартный вид числа Числовая ось Координатная плоскость Числовые промежутки Расстояние между точками Греческий алфавит Алгебраические выражения Определение и виды Названия выражений Свойства сложения Свойства умножения Алгебраическая сумма Раскрытие скобок Равенство Тождество Целые числа Определение и сравнение Сложение и вычитание Умножение и деление Противоположные числа Рациональные числа Определение и сравнение Действия с рациональными числами Отрицательные дроби Модуль числа Степени и корни Умножение и деление степеней Свойства степени Первая и нулевая степень Отрицательная степень Корень из числа Таблица квадратных корней Извлечение корня Дробная степень Иррациональные выражения Одночлены и многочлены Одночлены Степень одночлена Сложение и вычитание одночленов Умножение одночленов Деление одночленов Многочлены Сложение и вычитание многочленов Умножение одночлена на многочлен Умножение многочлена на многочлен Квадрат суммы и разности, разность квадратов Вынесение общего множителя за скобки Разложение способом группировки Формулы сокращённого умножения Уравнения Уравнение и корни Преобразование Решение уравнений с одним неизвестным Степень уравнения Системы уравнений Квадратные уравнения Дискриминант Неполные квадратные уравнения Теорема Виета Биквадратные уравнения Неравенства Описание и свойства Сложение и умножение С одной переменной Алгебраические дроби Сокращение Приведение к общему знаменателю Сложение и вычитание Умножение и деление Пропорциональность Прямая и обратная Пропорциональное деление Задачи на пропорциональное деление Функции Определение Способы задания Графики функций Область значений функции Арифметическая прогрессия Определение и свойство Формула n-го члена Сумма членов Геометрическая прогрессия Логарифмы Описание и свойства Десятичные логарифмы Натуральные логарифмы

Иррациональные выражения

Выражения, содержащие корень, который нельзя извлечь, называются иррациональными или радикальными.

Примеры:

иррациональные (радикальные) выражения  — иррациональные выражения.

Сложение и вычитание корней

При сложении или вычитании иррациональных выражений их пишут одно за другим с сохранением их знаков.

Примеры:

сложение и вычитание корней

В некоторых случаях с помощью преобразования можно сделать иррациональные выражения подобными, то есть, имеющими одинаковые показатели корней и подкоренные числа (или выражения), а затем сделать приведение.

Примеры:

корни сложение умножение вычитание

сложение вычитание корней примеры

Умножение и деление корней

При умножении иррациональных выражений с одинаковыми показателями корней перемножаются их подкоренные числа или выражения:

умножение и деление корней

При делении иррациональных выражений с одинаковыми показателями корней подкоренное число или выражение делимого делится на подкоренное число или выражение делителя:

правила деления и умножения корней

Примеры:

Возведение корня в степень

Чтобы возвести в степень иррациональное выражение, следует возвести в степень подкоренное число или выражение:

возведение корня в степень

Примеры:

формулы возведение корня в степень

При возведении    в  n-ю  степень знак корня отбрасывается, так как возведение числа (или выражения) в  n-ю  степень и извлечение из него корня  n-ой  степени — это взаимно сокращающиеся действия:

Извлечение корня

Чтобы извлечь корень из иррационального выражения, следует показатели корней перемножить:

,  так как 

Пример.

С помощью таких преобразований можно упростить извлечение корней  4-й,  6-й,  8-й,  9-й  и т. п. степеней из чисел.

Примеры:

Сокращение корней

Величина иррационального выражения не изменится, если показатель корня и подкоренного выражения умножить или разделить на одно и то же число:

так как извлечение корня и возведение в степень — это взаимно сокращающиеся действия, если их показатели равны.

На этом свойстве основано сокращение корней и приведение их к общему показателю.

Сокращение корней — это деление показателей корня и подкоренного числа (или выражения) на одно и то же число, если оно является общим множителем для всех показателей.

Примеры:

Приведение корней к общему показателю

Приведение корней к общему показателю имеет большое сходство с приведением дробей к общему знаменателю. Рассмотрим два способа:

  1. Показатели корней не имеют общих множителей. В этом случае показатель каждого корня и его подкоренное число (или выражение) умножают на произведение остальных корней.

    Рассмотрим три выражения:

    Приведение корней к общему показателю,

    Так как у данных показателей нет общего множителя, то просто перемножаем все показатели между собой. Полученный результат и станет общим показателем. После приведения к общему показателю выражения будут иметь следующий вид:

  2. Показатели корней имеют общий множитель. В этом случае надо найти НОК показателей и умножить показатель каждого корня на недостающий множитель.

    Рассмотрим два выражения:

    ,

    НОК (4, 6) = 12,  значит, для первого выражения дополнительным множителем будет  3,  а для второго  2.  После приведения к общему показателю выражения будут иметь следующий вид:

При умножении и делении иррациональных выражений с разными показателями их приводят к общему показателю, а затем уже умножают или делят их подкоренные числа или выражения.

Примеры: