izamorfix.ru
Введение Отличия алгебры от арифметики Множества Стандартный вид числа Числовая ось Координатная плоскость Числовые промежутки Расстояние между точками Греческий алфавит Алгебраические выражения Определение и виды Названия выражений Свойства сложения Свойства умножения Алгебраическая сумма Раскрытие скобок Равенство Тождество Целые числа Определение и сравнение Сложение и вычитание Умножение и деление Противоположные числа Рациональные числа Определение и сравнение Действия с рациональными числами Отрицательные дроби Модуль числа Степени и корни Умножение и деление степеней Свойства степени Первая и нулевая степень Отрицательная степень Корень из числа Таблица квадратных корней Извлечение корня Дробная степень Иррациональные выражения Одночлены и многочлены Одночлены Степень одночлена Сложение и вычитание одночленов Умножение одночленов Деление одночленов Многочлены Сложение и вычитание многочленов Умножение одночлена на многочлен Умножение многочлена на многочлен Квадрат суммы и разности, разность квадратов Вынесение общего множителя за скобки Разложение способом группировки Формулы сокращённого умножения Уравнения Уравнение и корни Преобразование Решение уравнений с одним неизвестным Степень уравнения Системы уравнений Квадратные уравнения Дискриминант Неполные квадратные уравнения Теорема Виета Биквадратные уравнения Неравенства Описание и свойства Сложение и умножение С одной переменной Алгебраические дроби Сокращение Приведение к общему знаменателю Сложение и вычитание Умножение и деление Пропорциональность Прямая и обратная Пропорциональное деление Задачи на пропорциональное деление Функции Определение Способы задания Графики функций Область значений функции Арифметическая прогрессия Определение и свойство Формула n-го члена Сумма членов Геометрическая прогрессия Логарифмы Описание и свойства Десятичные логарифмы Натуральные логарифмы

Извлечение корня

Извлечь из данного числа корень какой-нибудь степени значит найти такое число, которое при возведении в эту степень, будет равно данному числу.

Из правил знаков при возведении в степень следует, что:

  1. Корень нечётной степени из положительного числа есть число положительное, а из отрицательного – отрицательное.

    Примеры:

    3+27 = +3,   так как   (+3)3 = 27;

    3-27 = -3,   так как   (-3)3 = -27.

  2. Корень чётной степени из положительного числа может быть как положительным, так и отрицательным числом.

    Примеры:

    +9 = ±3,   так как   (+3)2 = +9   и   (-3)2 = +9;

    4+256 = ±4,   так как   (+4)4 = +256   и   (-4)4 = +256.

  3. Корень чётной степени из отрицательного числа является невозможным выражением, потому что любое положительное или отрицательное число при возведении в чётную степень даёт только положительный результат. Таким образом,

    -49 ,   4-256 ,   6-64   — это невозможные выражения.

    Невозможные выражения иначе называют мнимыми.

Извлечение корня из произведения, степени и дроби

Чтобы извлечь корень из произведения, надо извлечь его из каждого множителя отдельно.

Так же можно сказать, что корень произведения равен произведению корней всех его множителей:

корень произведения

Чтобы извлечь корень из степени, следует показатель степени разделить на показатель корня:

корень степени

Чтобы извлечь корень из дроби, следует извлечь его отдельно из числителя и из знаменателя:

корень из дроби

Примеры:

Вынесение множителя из-под знака корня

Когда нельзя извлечь корень из всего подкоренного числа или выражения, то подкоренное число или выражение раскладывают на множители и извлекают корень только из тех множителей, из которых это возможно сделать.

Примеры:

вынесение множителя из под знака корня

Внесение множителя под корень

Если нужно внести множитель под знак корня, то его следует возвести в степень, равную показателю корня.

Примеры:

внесение множителя под знак корня