izamorfix.ru
Введение Отличия алгебры от арифметики Множества Стандартный вид числа Числовая ось Координатная плоскость Числовые промежутки Расстояние между точками Греческий алфавит Алгебраические выражения Определение и виды Названия выражений Свойства сложения Свойства умножения Алгебраическая сумма Раскрытие скобок Равенство Тождество Целые числа Определение и сравнение Сложение и вычитание Умножение и деление Противоположные числа Рациональные числа Определение и сравнение Действия с рациональными числами Отрицательные дроби Модуль числа Степени и корни Умножение и деление степеней Свойства степени Первая и нулевая степень Отрицательная степень Корень из числа Таблица квадратных корней Извлечение корня Дробная степень Иррациональные выражения Одночлены и многочлены Одночлены Степень одночлена Сложение и вычитание одночленов Умножение одночленов Деление одночленов Многочлены Сложение и вычитание многочленов Умножение одночлена на многочлен Умножение многочлена на многочлен Квадрат суммы и разности, разность квадратов Вынесение общего множителя за скобки Разложение способом группировки Формулы сокращённого умножения Уравнения Уравнение и корни Преобразование Решение уравнений с одним неизвестным Степень уравнения Системы уравнений Квадратные уравнения Дискриминант Неполные квадратные уравнения Теорема Виета Биквадратные уравнения Неравенства Описание и свойства Сложение и умножение С одной переменной Алгебраические дроби Сокращение Приведение к общему знаменателю Сложение и вычитание Умножение и деление Пропорциональность Прямая и обратная Пропорциональное деление Задачи на пропорциональное деление Функции Определение Способы задания Графики функций Арифметическая прогрессия Определение и свойство Формула n-го члена Сумма членов Геометрическая прогрессия Логарифмы Описание и свойства Десятичные логарифмы Натуральные логарифмы

Целые числа

Если к ряду натуральных чисел приписать слева число 0, то получится ряд положительных целых чисел:

0, 1, 2, 3, 4, 5, 6, 7, ...

Целые числа — это положительные и отрицательные числа, не имеющие дробной части.

Целые отрицательные числа

Рассмотрим небольшой пример. На рисунке слева изображён термометр, который показывает температуру  7 °C  тепла. Если температура понизится на  4 °C,  то термометр будет показывать  3 °C  тепла. Уменьшению температуры соответствует действие вычитания:

7 - 4 = 3.

Примечание: все градусы пишутся с буквой  C (Цельсия),  знак градуса отделяется от числа пробелом. Например,  7 °C.

Если температура понизится на  7 °C,  то термометр будет показывать 0 °C. Уменьшению температуры соответствует действие вычитания:

7 - 7 = 0.

Если же температура понизится на  8 °C,  то термометр покажет  -1 °C  (1 °C мороза).  Но результат вычитания  7 - 8  нельзя записать с помощью натуральных чисел и нуля.

Проиллюстрируем вычитание на ряде целых положительных чисел:

1) От числа 7 отсчитаем влево 4 числа и получим 3:

2) От числа 7 отсчитаем влево 7 чисел и получим 0:

Отсчитать в ряду положительных целых чисел от числа 7 влево 8 чисел нельзя. Чтобы действие  7 - 8  стало выполнимым, расширим ряд положительных целых чисел. Для этого влево от нуля запишем (справа налево) по порядку все натуральные числа, добавляя к каждому из них знак - , показывающий, что это число стоит слева от нуля.

Записи  -1,  -2,  -3,  ... читают минус 1, минус 2, минус 3 и т. д.:

...,  -5,  -4,  -3,  -2,  -1,  0,  1,  2,  3,  4,  5,  ...

Полученный ряд чисел называют рядом целых чисел. Точки слева и справа в этой записи означают, что ряд можно продолжать неограниченно вправо и влево.

Справа от числа 0 в этом ряду расположены числа, которые называют натуральными или целыми положительными (кратко — положительными).

Слева от числа 0 в этом ряду расположены числа, которые называют целыми отрицательными (кратко — отрицательными).

Число 0 целое, но не является ни положительным, ни отрицательным числом. Оно разделяет положительные и отрицательные числа.

Следовательно, ряд целых чисел состоит из целых отрицательных чисел, нуля и целых положительных чисел.

Сравнение целых чисел

Сравнить два целых числа — значит, узнать, какое из них больше, какое меньше, или определить, что числа равны.

Сравнивать целые числа можно с помощью ряда целых чисел, так как числа в нём расположены от меньшего к большему, если двигаться по ряду слева направо. Поэтому в ряду целых чисел можно заменить запятые на знак меньше:

... -5 < -4 < -3 < -2 < -1 < 0 < 1 < 2 < 3 < 4 < 5 < ...

Следовательно, из двух целых чисел больше то число, которое в ряду стоит правее, и меньше то, которое стоит левее, значит:

1) Любое положительное число больше нуля и больше любого отрицательного числа:

1 > 0;    15 > -16.

2) Любое отрицательное число меньше нуля:

-7 < 0;    -357 < 0.

3) Из двух отрицательных чисел больше то, которое в ряду целых чисел стоит правее:

-31 < -28.