izamorfix.ru
Введение Отличия алгебры от арифметики Множества Стандартный вид числа Числовая ось Координатная плоскость Числовые промежутки Расстояние между точками Греческий алфавит Алгебраические выражения Определение и виды Названия выражений Свойства сложения Свойства умножения Алгебраическая сумма Раскрытие скобок Равенство Тождество Целые числа Определение и сравнение Сложение и вычитание Умножение и деление Противоположные числа Рациональные числа Определение и сравнение Действия с рациональными числами Отрицательные дроби Модуль числа Степени и корни Умножение и деление степеней Свойства степени Первая и нулевая степень Отрицательная степень Корень из числа Таблица квадратных корней Извлечение корня Дробная степень Иррациональные выражения Одночлены и многочлены Одночлены Степень одночлена Сложение и вычитание одночленов Умножение одночленов Деление одночленов Многочлены Сложение и вычитание многочленов Умножение одночлена на многочлен Умножение многочлена на многочлен Квадрат суммы и разности, разность квадратов Вынесение общего множителя за скобки Разложение способом группировки Формулы сокращённого умножения Уравнения Уравнение и корни Преобразование Решение уравнений с одним неизвестным Степень уравнения Системы уравнений Квадратные уравнения Дискриминант Неполные квадратные уравнения Теорема Виета Биквадратные уравнения Неравенства Описание и свойства Сложение и умножение С одной переменной Алгебраические дроби Сокращение Приведение к общему знаменателю Сложение и вычитание Умножение и деление Пропорциональность Прямая и обратная Пропорциональное деление Задачи на пропорциональное деление Функции Определение Способы задания Графики функций Арифметическая прогрессия Определение и свойство Формула n-го члена Сумма членов Геометрическая прогрессия Логарифмы Описание и свойства Десятичные логарифмы Натуральные логарифмы

Уравнение

Уравнение — это равенство, которое справедливо не при любых значениях входящих в него букв, а только при некоторых. Так же можно сказать, что уравнение является равенством, содержащим неизвестные числа, обозначенные буквами.

Например, равенство  10 - x = 2  является уравнением, так как оно справедливо только при  x = 8.  Равенство  x2 = 49  — это уравнение, справедливое при двух значениях  x,  а именно, при

x = +7   и   x = -7,

так как

(+7)2 = 49   и   (-7)2 = 49.

Если вместо  x  подставить его значение, то уравнение превратится в тождество. Такие переменные, как  x,  которые только при определённых значениях обращают уравнение в тождество, называются неизвестными уравнения. Они обычно обозначаются последними буквами латинского алфавита  xy  и  z.

Любое уравнение имеет левую и правую части. Выражение, стоящее слева от знака  =,  называется левой частью уравнения, а стоящее справа — правой частью уравнения. Числа и алгебраические выражения, из которых состоит уравнение, называются членами уравнения:

математика 6 класс корень уравнения

Корни уравнения

Корень уравнения — это число, при подстановке которого в уравнение получается верное равенство. Уравнение может иметь всего один корень, может иметь несколько корней или не иметь корней вообще.

Например, корнем уравнения

10 - x = 2

является число  8,  а у уравнения

x2 = 49

два корня —  +7  и  -7.

Решить уравнение – значит, найти все его корни или доказать, что их нет.

Виды уравнений

Кроме числовых уравнений, подобных приведённым выше, где все известные величины обозначены числами, существуют ещё буквенные уравнения, в которые кроме букв, обозначающих неизвестные, входят ещё буквы, обозначающие известные (или предполагаемые известные) величины.

Примеры:

x - a = b + c;

3x + c = 2a + 5.

По числу неизвестных уравнения разделяются на уравнения с 1-м неизвестным, с 2-мя неизвестными, с 3-мя и более неизвестными.

Примеры:

7x + 2 = 35 - 2x  — уравнение с одним неизвестным,

3x + y = 8x - 2y  — уравнение с двумя неизвестными.