izamorfix.ru
Введение Плоскость Сравнение геометрических фигур Геометрическая точка Периметр и площадь Линии Виды линий Прямая линия Луч Пересекающиеся прямые Параллельные прямые Признаки и свойства параллельных прямых Отрезок Сумма и разность отрезков Ломаная линия Углы Угол Измерение углов Сравнение углов Виды углов Смежные и вертикальные углы Углы при пересечении двух прямых Треугольники Треугольник Виды треугольников Сумма углов Внешние углы Признаки равенства Теорема Пифагора Подобные треугольники Периметр и площадь Окружность и круг Окружность Касательная и секущая Касание окружностей Центральный угол Вписанный угол Круг Длина окружности Многоугольники Описание Сумма углов Четырёхугольники Описание и виды Прямоугольник Периметр квадрата, прямоугольника и ромба Площадь прямоугольника и квадрата Параллелограмм Трапеция

Смежные и вертикальные углы

Смежные углы

Смежные углы — это пара углов, у которых одна сторона общая, а две другие стороны лежат на одной прямой. Следовательно, два смежных угла составляют развёрнутый угол. Общая сторона двух смежных углов называется наклонной к прямой, на которой лежат другие стороны (только в том случае, когда смежные углы не равны).

определение смежных углов

∠ABD  и  ∠DBC  — это смежные углы,  AC  — прямая, луч  BD  — общая сторона углов и наклонная к прямой  AC∠ABC  — развёрнутый угол,  B  — основание наклонной.

Чтобы построить угол, смежный с данным углом, нужно одну из сторон угла продлить за вершину:

построить смежный угол

Сумма смежных углов

Любые два смежных угла составляют в сумме развёрнутый угол. Развёрнутый угол равен двум прямым углам, поэтому можно сказать, что сумма двух смежных углов равна двум прямым углам.

сумма двух смежных углов

∠ABD + ∠DBC = 2d,

где  d  — это обозначение прямого угла  (d = 90°).

Вертикальные углы

Вертикальные углы — это пара углов, у которых стороны одного угла являются продолжением сторон другого угла. Пересечение двух прямых линий образует две пары вертикальных углов:

какие углы называются вертикальными

∠AOB  и  ∠COD,  а также  ∠AOD  и  ∠BOC  — вертикальные углы.

Равенство вертикальных углов

Вертикальные углы равны между собой. Рассмотрим вертикальные углы  1  и  3:

равенство вертикальных углов

Сумма  1  и  2  равна развёрнутому углу  (180°).  Сумма  2  и  3  тоже равна развёрнутому углу  (180°).  Значит:

1 + 2 = 2 + 3

Следовательно,  1 = 3.  Равенство вертикальных углов доказано.