izamorfix.ru
Введение Плоскость Сравнение геометрических фигур Геометрическая точка Периметр и площадь Линии Виды линий Прямая линия Луч Пересекающиеся прямые Параллельные прямые Признаки и свойства параллельных прямых Отрезок Сумма и разность отрезков Ломаная линия Углы Угол Измерение углов Сравнение углов Виды углов Смежные и вертикальные углы Углы при пересечении двух прямых Треугольники Треугольник Виды треугольников Сумма углов Внешние углы Признаки равенства Теорема Пифагора Подобные треугольники Периметр и площадь Окружность и круг Окружность Касательная и секущая Касание окружностей Центральный угол Вписанный угол Круг Длина окружности Многоугольники Описание Сумма углов Четырёхугольники Описание и виды Прямоугольник Периметр квадрата, прямоугольника и ромба Площадь прямоугольника и квадрата Параллелограмм Трапеция

Прямоугольник

Прямоугольник — это выпуклый многоугольник. Прямоугольник образуется замкнутой ломаной линией, состоящей из четырёх звеньев, и той частью плоскости, которая находится внутри ломаной.

В тексте прямоугольники обозначаются четырьмя прописными латинскими буквами, стоящими при вершинах —  ABCD.

У прямоугольников противоположные стороны параллельны и равны:

прямоугольник

В прямоугольнике  ABCD  точки  ABC  и  D  — это вершины прямоугольника, отрезки  ABBCCD  и  DA  — стороны. Углы, образованные сторонами, называются внутренними углами или просто углами прямоугольника.

Главное отличие прямоугольников от остальных четырёхугольников — четыре прямых внутренних угла:

Свойства диагоналей

Отрезки, соединяющие противолежащие вершины прямоугольника, называются диагоналями.

диагонали прямоугольника

Отрезки  AC  и  BD  — диагонали,  O  — точка пересечения диагоналей.

В любом прямоугольнике можно провести всего две диагонали. Они обладают следующими свойствами:

Квадрат — прямоугольник, у которого все стороны равны. Диагонали квадрата обладают всеми свойствами диагоналей прямоугольника. Также диагонали квадрата имеют и дополнительных свойства:

диагонали квадрата