izamorfix.ru
Введение Плоскость Сравнение геометрических фигур Геометрическая точка Периметр и площадь Линии Виды линий Прямая линия Луч Пересекающиеся прямые Параллельные прямые Признаки и свойства параллельных прямых Отрезок Сумма и разность отрезков Ломаная линия Углы Угол Измерение углов Сравнение углов Виды углов Смежные и вертикальные углы Углы при пересечении двух прямых Треугольники Треугольник Виды треугольников Сумма углов Внешние углы Признаки равенства Теорема Пифагора Подобные треугольники Периметр и площадь Окружность и круг Окружность Касательная и секущая Касание окружностей Центральный угол Вписанный угол Круг Длина окружности Многоугольники Описание Сумма углов Четырёхугольники Описание и виды Прямоугольник Периметр квадрата, прямоугольника и ромба Площадь прямоугольника и квадрата Параллелограмм Трапеция

Площадь прямоугольника и квадрата

Площадь прямоугольника или квадрата — это часть плоскости, занимаемая данной фигурой.

Рассмотрим два прямоугольника  ABCD  и  A1B1C1D1:

как найти площадь прямоугольника, прямоугольники имеющие одинаковую площадь

Чтобы узнать сколько места они занимают, надо вычислить их площадь. Так как размеры прямоугольников даны в сантиметрах, то и за единицу измерения площади можно взять квадратный сантиметр.

Прямоугольник  ABCD  состоит из 4 строк, в каждой из которых по 6 квадратных сантиметров, значит всего в нём  6 · 4,  или  24 см2A1B1C1D1  состоит из 3 строк, по 8 квадратных сантиметров, значит в нём  8 · 3,  или  24 см2.  Оказалось, что несмотря на то, что прямоугольники имеют разные размеры, они занимают одинаковую площадь.

Из данного примера можно сделать вывод, что площадь прямоугольника равна произведению длин его смежных сторон. Общая формула:

S = a · b,

где  S  — площадь прямоугольника, а  a  и  b  — его смежные стороны.

Рассмотрим квадрат  ABCD:

как найти площадь квадрата

так как квадрат — прямоугольник, у которого все стороны равны, то в любом квадрате количество строк будет совпадать с количеством квадратных сантиметров, содержащихся в каждой строке. Квадрат  ABCD  состоит из 4 строк, по 4 квадратных сантиметра в каждой, значит в нём  4 · 4,  или  16 см2.

Из примера можно сделать вывод, что площадь квадрата равна длине любой его стороны во второй степени. Общая формула:

S = a2,

где  S  — площадь квадрата, а  a  — его сторона.