izamorfix.ru
Введение Плоскость Сравнение геометрических фигур Геометрическая точка Периметр и площадь Линии Виды линий Прямая линия Луч Пересекающиеся прямые Параллельные прямые Признаки и свойства параллельных прямых Отрезок Сумма и разность отрезков Ломаная линия Углы Угол Измерение углов Сравнение углов Виды углов Смежные и вертикальные углы Углы при пересечении двух прямых Треугольники Треугольник Виды треугольников Сумма углов Внешние углы Признаки равенства Теорема Пифагора Подобные треугольники Периметр и площадь Окружность и круг Окружность Касательная и секущая Касание окружностей Центральный угол Вписанный угол Круг Длина окружности Многоугольники Описание Сумма углов Четырёхугольники Описание и виды Прямоугольник Периметр квадрата, прямоугольника и ромба Площадь прямоугольника и квадрата Параллелограмм Трапеция

Круг

Круг — это часть плоскости, ограниченная окружностью. Центр данной окружности называется центром круга, а расстояние от центра до любой точки окружности — радиусом круга:

геометрия площадь круга

O  — центр круга,  OA  — радиус круга.

Площадь круга

Площадь круга равна произведению числа  π  на квадрат радиуса. Формула нахождения площади круга:

S = πr2,

где  S  — площадь круга, а  r  — радиус круга.

Так как диаметр круга равен удвоенному радиусу, то радиус равен диаметру, разделённому на 2:

D = 2r,   значит   rD .
2

Следовательно, формула нахождения площади круга через диаметр будет выглядеть так:

S  =  π(D)2  =  πD2  =  πD2 .
2224

Сектор круга. Площадь сектора

Сектор — это часть круга, ограниченная двумя радиусами и дугой. Два радиуса разделяют круг на два сектора:

сектор круга

Чтобы найти площадь сектора, дуга которого содержит  ,  надо площадь круга разделить на  360  и полученный результат умножить на  n.

площадь сектора круга

Формула площади сектора:

Sπr2 · nπr2n,
360360

где  S  — площадь сектора. Выражение

πr2n
360

можно представить в виде произведения

πr2n = n · πr · r,
3601802

где  nπr  — это длина дуги сектора.
180

Следовательно, площадь сектора равна длине дуги сектора, умноженной на половину радиуса:

Ssr,
2

где  S  — это площадь сектора,  s  — длина дуги данного сектора,  r  — радиус круга.

Сегмент. Площадь сегмента

Сегмент — это часть круга, ограниченная дугой и стягивающей её хордой. Любая хорда делит круг на два сегмента:

сегмент круга

Площадь сегмента равна половине радиуса, умноженной на разность между дугой сегмента и половиной хорды двойной дуги.

площадь сегмента круга

Площадь сегмента  AMB  будет вычисляться по формуле:

Sr(s - BC),
2

где  S  — это площадь сегмента,  r  — радиус круга,  s  — длина дуги  AB,  а  BC  — длина половины хорды двойной дуги.